
NobbZ-Emacs Configuration

Norbert Melzer

February 25, 2017

Contents

1 Foreword

A properly rendered version of this document is available at the following
places:

PDF https://nobbz.github.io/emacs.d/settings.pdf

HTML https://nobbz.github.io/emacs.d/settings.html

This file is massively inspired/shamelessely stolen from the one shown at
https://ogbe.net/emacsconfig.html

Before this file is actually loaded the following init.el is executed.

;; NobbZ init.el
;; Real stuff happens in =settings.org=

(require 'package)
(setq package-archives

'(("gnu" . "http://elpa.gnu.org/packages/")
("melpa" . "http://melpa.org/packages/")
("org" . "http://orgmode.org/elpa/")))

(when (boundp 'package-pinned-packages)
(setq package-pinned-packages

'((org . "org"))))
(package-initialize)
(package-refresh-contents)

(unless (package-installed-p 'use-package)

1

https://nobbz.github.io/emacs.d/settings.pdf
https://nobbz.github.io/emacs.d/settings.html
https://ogbe.net/emacsconfig.html

(package-install 'use-package))

(eval-when-compile
(require 'use-package))

;; Set the load path
(setq dot-emacs-d-basedir (file-name-directory load-file-name))
(add-to-list 'load-path (concat dot-emacs-d-basedir "lisp/"))
(add-to-list 'load-path (concat dot-emacs-d-basedir "vendor/org/lisp") t)
(add-to-list 'load-path (concat dot-emacs-d-basedir "vendor/org/contrib/lisp") t)

;; Moved all the custom.el stuff into its own file called
;; =~/.emacs.d/customize.el=
(setq custom-file (concat dot-emacs-d-basedir "customize.el"))
(load custom-file)

(setq hostname
(replace-regexp-in-string "\\`[\t\n]*" ""

(replace-regexp-in-string "[\t\n]*\\'" ""
(shell-command-to-string "hostname"))))

(require 'org)

(setq org-ditaa-jar-path (concat dot-emacs-d-basedir "vendor/org/contrib/scripts/ditaa.jar"))

(defface org-block-begin-line
'((t (:foreground "#99968b" :background "#303030")))
"Face used for line delimiting the begin of source blocks.")

(defface org-block-end-line
'((t (:foreground "#99968b" :background "#303030")))
"Face used for line delimiting the end of source blocks.")

(org-babel-load-file (concat dot-emacs-d-basedir "settings.org"))

Also as you can see in the file above, I am using a dedicated file for
customized variables. This file has the following content.

(custom-set-variables
;; custom-set-variables was added by Custom.

2

;; If you edit it by hand, you could mess it up, so be careful.
;; Your init file should contain only one such instance.
;; If there is more than one, they won't work right.
'(package-selected-packages

(quote
(lfe-mode editorconfig company-go go-mode caml alchemist elixir-mode f s helm-idris idris-mode edts erlang helm markdown-mode+ markdown-mode framemove haskell-mode puppet-mode project-explorer company which-key use-package))))

(custom-set-faces
;; custom-set-faces was added by Custom.
;; If you edit it by hand, you could mess it up, so be careful.
;; Your init file should contain only one such instance.
;; If there is more than one, they won't work right.
)

The structure of the loading sequence as it is today can be seen in figure
??, while the planned way to load can be found in figure ??.

Figure 1: Current file loading structure

2 Helpers

Small little helpers which make it easier to live-reload the config:

3

Figure 2: Planned file loading structure

(defun reload-settings ()
(interactive)
(org-babel-load-file "~/.emacs.d/settings.org"))

(defun settings ()
(interactive)
(find-file "~/.emacs.d/settings.org"))

3 Packages

(setq package-list '(use-package framemove htmlize))

;; (unless package-archive-contents
;; (package-refresh-contents))

(package-refresh-contents)

4

(dolist (package package-list)
(unless (package-installed-p package)

(package-install package)))

(use-package framemove)

3.1 which-key

which-key provides a minor mode, that displays the key bindings following
your currently entered incomplete command in a pop up.

https://github.com/justbur/emacs-which-key

3.1.1 Install and load

(unless (package-installed-p 'which-key)
(package-install 'which-key))

(require 'which-key)
(which-key-mode)

3.1.2 Configuration

1 second is a very long delay, I do think that about a tenth of a second is
enough.

(setq which-key-idle-delay 0.1)

3.1.3 Key-chords

which-key does not have any key-chords on its own, but I will enter some
global stuff here.

(which-key-add-key-based-replacements
"C-x C-f" "Open file"
"C-x C-s" "Save file")

3.2 helm

helm is an emacs framework for incremental completions and narrowing se-
lections. It helps to rapidly complete file names, buffer names, or any other
emacs interactions requiring selecting an item from a list of possible choices.

5

https://github.com/justbur/emacs-which-key

3.2.1 Innstall and load

(unless (package-installed-p 'helm)
(package-install 'helm))

(require 'helm-config)
(require 'helm)

3.2.2 TODO Configuration

1. Size

Per default the helm-buffer takes quite a large portion of the screen
estate, therefore we reduce the size and make it resize automatically
as the amount of matches narrows down.

(helm-autoresize-mode)
(setq helm-autoresize-max-height 33) ; take 33% of the screen at most
(setq helm-autoresize-min-height 1) ; get as small as necessary

3.2.3 TODO Keybindings

(global-set-key (kbd "M-x") 'helm-M-x)
(global-set-key (kbd "C-x C-f") 'helm-find-files)
(global-set-key (kbd "C-x C-b") 'helm-buffers-list)

3.3 company-mode

company-mode is a text completion framework for Emacs.
http://company-mode.github.io/

3.3.1 Install and load

(unless (package-installed-p 'company)
(package-install 'company))

(require 'company)
(add-hook 'after-init-hook 'global-company-mode)

3.3.2 TODO Configuration

3.3.3 TODO Key-chords

3.4 project-explorer

project-explorer is a tree explorer.

6

http://company-mode.github.io/

https://github.com/sabof/project-explorer

3.4.1 Install and load

We are only allowed to load project-explorer when in interactive mode.

(unless (package-installed-p 'project-explorer)
(package-install 'project-explorer))

(unless noninteractive
(require 'project-explorer))

3.4.2 Configuration

There is nothing special to configure right now.

3.4.3 TODO Key-chords

Toggle the explorer.

(global-set-key (kbd "C-c p e") 'project-explorer-toggle)

Also we do need to update the descriptions in =which-key=s dialog.

(which-key-add-key-based-replacements
"C-c p" "Project-Explorer"
"C-c p e" "Toggle PE")

3.5 Puppet-Mode

puppet-mode does provide syntax-highlighting, alignemt and navigation for
puppet-code.

https://github.com/lunaryorn/puppet-mode

3.5.1 Install and load

(unless (package-installed-p 'puppet-mode)
(package-install 'puppet-mode))

Also we want to open Puppetfile=s in =ruby-mode.

(add-to-list
'auto-mode-alist '("\\`Puppetfile\\'" . ruby-mode))

7

https://github.com/sabof/project-explorer
https://github.com/lunaryorn/puppet-mode

3.5.2 Configuration

We need to alter the puppet-lint-command a bit to have it actually work in
our projects.

(setq puppet-lint-command "puppet-lint –no-autoloader_layout-check –with-context –log-format \"%{path}:%{line}: %{kind}: %{message} (%{check})\"")

3.5.3 Key-Chords

(which-key-add-major-mode-key-based-replacements 'puppet-mode
"C-c C-a" "Align parameters"
"C-c C-'" "Toggle quoting"
"C-c C-;" "Blank string"
"C-c C-j" "Jump to"
"C-c C-c" "dry-run"
"C-c C-v" "Validate syntax"
"C-c C-l" "Check semantic")

3.6 haskell-mode

haskell-mode does provide syntax-highlighting, alignment and navigation
for haskell source code.

http://haskell.github.io/haskell-mode/

3.6.1 Install and load

(unless (package-installed-p 'haskell-mode)
(package-install 'haskell-mode))

3.7 lfe-mode

lfe-mode is used to highlight and complete lfe-files. It is currently not
available at any repository, so it is delivered with this settings-file.

3.7.1 Install and load

; (defvar lfe-mode-dir "~/.emacs.d/vendor/lfe")
; (add-to-list 'load-path lfe-mode-dir)
(unless (package-installed-p 'lfe-mode)

(package-install 'lfe-mode))
; (require 'lfe-start)

8

http://haskell.github.io/haskell-mode/
http://lfe.io/

3.8 alchemist

Elixir Tooling Integration Into Emacs.
https://github.com/tonini/alchemist.el
ATTENTION: We do need to make sure, that nothing in this section

is done, when we do not have emacs 24.4 or later!

3.8.1 Install and load

(unless (package-installed-p 'alchemist)
(package-install 'alchemist))

3.8.2 TODO Configuration

3.8.3 TODO Keybindings

Currently all keybindings used by alchemist do violate emacs keybinding
conventions.

A bug has been reported: https://github.com/tonini/alchemist.el/
issues/246

And in the meantime it was closed (by me) in favor of the older https:
//github.com/tonini/alchemist.el/issues/229.

Until it got fixed, I won’t configure any further key-bindings.

3.9 go-mode

This is go-mode, the Emacs mode for editing Go code.

3.9.1 Install and load

(unless (package-installed-p 'go-mode)
(package-install 'go-mode))

(unless (package-installed-p 'company-go)
(package-install 'company-go))

(require 'company-go) ;; perhaps as an hook for go-mode?

9

https://github.com/tonini/alchemist.el
https://github.com/tonini/alchemist.el/issues/246
https://github.com/tonini/alchemist.el/issues/246
https://github.com/tonini/alchemist.el/issues/229
https://github.com/tonini/alchemist.el/issues/229

3.9.2 TODO Configuration

3.9.3 TODO Keybindings

4 TODO Security

5 Appearance, UI Elements, and the Emacs server

First start a server and then set some important appearance settings. Note
that some of the settings are in init.el.

5.1 The server

Start the server if not already running.

(load "server")
(unless (server-running-p) (server-start))

When connected to a server using emacsclient, we want to kill the client
using C-x k, the way it seems natural.

(add-hook 'server-switch-hook
(lambda ()

(when (current-local-map)
(use-local-map (copy-keymap (current-local-map))))

(local-set-key (kbd "C-x k") 'server-edit)))

5.2 Appearance

5.2.1 Theme & Faces

(load-theme 'wheatgrass) ;; A nice dark theme
(set-face-attribute 'default nil :height 100) ;; 10pt font height

;; (set-face-attribute 'default nil :family "Consolas")
(set-face-attribute 'fringe nil :background "#2d2d2d")
(set-face-attribute 'font-lock-comment-face nil :slant 'italic :weight 'semibold)
;; (set-fontset-font "fontset-default" 'unicode "DejaVu Sans Mono for Powerline")

(global-hl-line-mode t)

We want to use FiraCode if possible by any means.

10

init.el

(when (window-system)
(set-default-font "Fira Code"))

;; (let ((alist '((33 . ".\\(?:\\(?:==\\|!!\\)\\|[!=]\\)")
;; (35 . ".\\(?:###\\|##\\|_(\\|[#(?[_{]\\)")
;; (36 . ".\\(?:>\\)")
;; (37 . ".\\(?:\\(?:%%\\)\\|%\\)")
;; (38 . ".\\(?:\\(?:&&\\)\\|&\\)")
;; (42 . ".\\(?:\\(?:**/\\)\\|\\(?:*[*/]\\)\\|[*/>]\\)")
;; (43 . ".\\(?:\\(?:\\+\\+\\)\\|[+>]\\)")
;; (45 . ".\\(?:\\(?:-[>-]\\|«\\|»\\)\\|[<>}~-]\\)")
;; (46 . ".\\(?:\\(?:\\.[.<]\\)\\|[.=-]\\)")
;; (47 . ".\\(?:\\(?:**\\|//\\|==\\)\\|[*/=>]\\)")
;; (48 . ".\\(?:x[a-zA-Z]\\)")
;; (58 . ".\\(?:::\\|[:=]\\)")
;; (59 . ".\\(?:;;\\|;\\)")
;; (60 . ".\\(?:\\(?:!–\\)\\|\\(?:~~\\|->\\|\\$>\\|*>\\|\\+>\\|–\\|<[<=-]\\|=[<=>]\\||>\\)\\|[*$+~/<=>|-]\\)")
;; (61 . ".\\(?:\\(?:/=\\|:=\\|«\\|=[=>]\\|»\\)\\|[<=>~]\\)")
;; (62 . ".\\(?:\\(?:=>\\|>[=>-]\\)\\|[=>-]\\)")
;; (63 . ".\\(?:\\(\\?\\?\\)\\|[:=?]\\)")
;; (91 . ".\\(?:]\\)")
;; (92 . ".\\(?:\\(?:\\\\\\\\\\)\\|\\\\\\)")
;; (94 . ".\\(?:=\\)")
;; (119 . ".\\(?:ww\\)")
;; (123 . ".\\(?:-\\)")
;; (124 . ".\\(?:\\(?:|[=|]\\)\\|[=>|]\\)")
;; (126 . ".\\(?:~>\\|~~\\|[>=@~-]\\)"))))
;; (dolist (char-regexp alist)
;; (set-char-table-range composition-function-table
;; (car char-regexp)
;; `([,(cdr char-regexp) 0 font-shape-gstring]))))

5.2.2 UI Elements

Get rid of that ugly disturbing stuff no one needs

(menu-bar-mode -1)
(when (display-graphic-p)

(tool-bar-mode -1)
(scroll-bar-mode -1))

11

5.2.3 Welcome Screen

We also want to get rid of the splash screen and start into home directory.

(setq inhibit-startup-message t)
(setq inhibit-splash-screen t)
(setq initial-scratch-message nil)

5.2.4 TODO Window Geometry

5.2.5 TODO Scrolling

I need to find out how to let emacs behave as with spacemacs smooth-
scrolling setting.

6 Encoding

Most of the time I want to have UTF-8 as my file encoding.

(set-language-environment "UTF-8")

7 Pathes

7.1 Autosave and Backup

Autosaves directly beneath the edited files do clutter up the sourcetree. In-
stead let’s throw them inside ~/tmp/.

(defvar backup-dir (expand-file-name "~/tmp/emacs_backup/"))
(defvar autosave-dir (expand-file-name "~/tmp/emacs_autosave/"))

(setq backup-directory-alist (list (cons ".*" backup-dir)))
(setq auto-save-list-file-prefix autosave-dir)
(setq auto-save-file-name-transforms `((".*" ,autosave-dir t)))
(setq tramp-backup-directory-alist backup-directory-alist)
(setq tramp-auto-save-directory autosave-dir)

7.2 TODO Dropbox

We need to know the basepath of dropbox.
The current function to read the path from dropbox’ config is very ugly

and needs some care to make it more beautiful.

12

(require 'json)

(defun find-dropbox-folder ()
(interactive)
(let ((json-path (if (eq system-type 'gnu/linux)

(expand-file-name "~/.dropbox/info.json")
(concat (getenv "APPDATA") "\\..\\Local\\Dropbox\\info.json"))))

(cdr (assoc 'path (car (json-read-file json-path))))))
(defvar dropbox-base-path (find-dropbox-folder))

8 Window Movement

Use Shift-<Arrow> to navigate through windows.

(unless (package-installed-p 'framemove)
(package-install 'framemove))

(require 'framemove)
(windmove-default-keybindings)
(setq framemove-hook-into-windmove t)

9 Debugging

Setup some keys to make it easier to use GUD.

(global-set-key (kbd "<f7>") 'gud-cont)
(global-set-key (kbd "<f6>") 'gud-step)
(global-set-key (kbd "<f5>") 'gud-next)
(global-set-key (kbd "<f8>") 'gud-finish)

10 Whitespace

We want to see trailing whitespace, since it is the devil.

(require 'whitespace)
(setq-default show-trailing-whitespace t)
(global-whitespace-mode)
(setq-default indent-tabs-mode nil)

13

10.1 But do not display in some modes

(defun no-trailing-whitespace ()
(setq show-trailing-whitespace nil))

Add a line for each mode:

(add-hook 'buffer-mode-hook 'no-trailing-whitespace)

(add-hook 'minibuffer-setup-hook 'no-trailing-whitespace)
(add-hook 'term-mode-hook 'no-trailing-whitespace)

11 TODO Dired

11.1 General Settings

The dirst two lines stop dired from asking me if I really want to recursively
delete/copy directories. I never answer "no" to that question.

The other lines enable "Do What I Mean" mode for dired, using the
other buffers location as target when copying in split-screen mode.

(setq dired-recursive-copies 'always)
(setq dired-recursive-deletes 'always)
(setq dired-dwim-target t)
(setq dired-listing-switches "-alh")

12 Org-Mode

org-mode might be THE killer app for emacs.

12.1 Installation

(use-package org
:ensure t
:defer t
:pin org)

12.2 General settings

Some general settings for org.

14

http://orgmode.org/

(require 'org)
(setq-default
org-return-follows-link t
org-image-actual-width '(400)
org-highlight-latex-and-related '(latex script entities))

(add-hook 'org-mode-hook 'turn-on-auto-fill)

12.3 Allow execution of src-blocks

First we need an empty list

(setq nobbz-babel-languages-alist '())

12.3.1 LATEX

(require 'ob-latex)
(add-to-list 'nobbz-babel-languages-alist '(latex . t))

12.3.2 Emacs-Lisp

(add-to-list 'nobbz-babel-languages-alist '(emacs-lisp . t))

12.3.3 Ditaa

(add-to-list 'nobbz-babel-languages-alist '(ditaa . t))

12.3.4 Applying the stuff

(org-babel-do-load-languages
'org-babel-load-languages
nobbz-babel-languages-alist)

15

12.3.5 Execution security

(defun nobbz-org-confirm-babel-evaluate (lang body)
(not (string= lang "ditaa"))) ; don't ask for ditaa

(setq org-confirm-babel-evaluate 'nobbz-org-confirm-babel-evaluate)

12.4 Syntax-Highlighting in sourceblocks

This is a very important feature in an org-document. Also adds native <tab>
behaviour in those blocks.

(setq
org-src-fontify-natively t
org-src-tab-acts-natively t)

12.5 HTML Export

There shall be a custom stylesheet for HTML export.

(require 'ox-html)
(setq org-html-htmlize-output-type 'inline-css)

12.6 PDF-Export

Use minted as a highlighter.

(require 'ox-latex)
(add-to-list 'org-latex-packages-alist '("" "minted"))
(setq org-latex-listings 'minted)

16

Also we want to use latexmk as the build-manager and lualatex as the
engine.

(setq org-latex-pdf-process
'("latexmk -lualatex -f -shell-escape %f"))

12.7 Agenda

We want to have this file itself on our agenda.

(setq org-default-notes-file (concat dropbox-base-path "/Dokumente/org/TODO.org"))
(add-to-list 'org-agenda-files (concat dropbox-base-path "/Dokumente/org/TODO.org"))
(add-to-list 'org-agenda-files "~/.emacs.d/settings.org")

Also, we do need to have some additional convinience functions which
help to find the various agenda related files.

(defun open-todo ()
(interactive)
(find-file (concat dropbox-base-path "/Dokumente/org/TODO.org")))

(defun open-timing ()
(interactive)
(find-file (concat dropbox-base-path "/Dokumente/org/time-sheet.org")))

17

